Отчёт о проделанной работе с использование оборудования ИВЦ НГУ

1. Тема работы

Влияние природы алюмооксидных носителей на каталитические свойства Niфосфидных катализаторов в реакции гидродеоксигенации модельных соединений растительных масел.

2. Состав коллектива

Яковлев Илья Вадимович, ИК СО РАН, м.н.с.

Папуловский Евгений Сергеевич, ИК СО РАН, н.с., к.х.н.

Шаманаев Иван Владимирович, ИК СО РАН, н.с., к.х.н.

3. Информация о гранте

Грант РФФИ 19-53-04017 «Влияние природы алюмооксидных носителей на каталитические свойства Ni-фосфидных катализаторов в реакции гидродеоксигенации модельных соединений растительных масел» (2019-2021), руководитель: Яковлев Илья Вадимович

4. Научное содержание работы:

1. Постановка задачи

Непищевые триглицериды жирных кислот могут использоваться в качестве возобновляемого альтернативного источника энергии, однако, они требуют дополнительной переработки — гидродеоксигенации (ГДО). В качестве перспективных катализаторов этого процесса себя зарекомендовали системы на основе нанесенного фосфида никеля. В качестве носителя для данного катализатора часто используется оксид алюминия, однако в литературе содержится недостаточно данных влиянии природы этого носителя на формирование активного компонента и на протекание реакции ГДО триглицеридов жирных кислот. Молодые коллективы из ИК СО РАН и НИИ ФХП БГУ объединили свои усилия в данном проекте, посвященном исследованию строения и каталитических свойств фосфидов никеля, как ненанесённых, так и нанесённых на различные модификации оксида алюминия. Строение катализаторов исследовалось с помощью сочетания таких современных методик как ЯМР-спектроскопия в твердом теле, рентгеновская дифракция, электронная микроскопия и др., а каталитические свойства проверялись в реакции ГДО модельного соединения эфиров жирных кислот метилпальмитата. Конечная цель проекта — установление зависимости между строением катализатора (состав активного компонента, строение и поверхностные характеристики носителя) и его каталитическими свойствами, что в конечном итоге будет способствовать созданию эффективного катализатора для получения ценных видов топлива из биомассы.

2. Современное состояние проблемы на момент начала работы

В литературе больше всего работ посвящено Ni-фосфидным катализаторам, нанесённым на носители на основе SiO₂ (силикагель, SBA-15, MCM-41). Исследовалось влияние соотношения Ni:P на физико-химические и каталитические свойства в ГДО метиллаурата (C₁₁H₂₃COOCH₃) [1], метилпальмитата (C₁₅H₃₁COOCH₃) [2] и метилолеата (C₁₇H₃₃COOCH₃) [3], влияние условий приготовления на физико-химические и каталитические свойства в ГДО метилпальмитата [4], влияние размера частиц Ni₂P (Ni₂P/SiO₂, Ni₂P/MCM-41 и Ni₂P/SBA-15) на каталитические свойства в ГДО метиллаурата [5],

влияние предшественника активного компонента на физико-химические и каталитические свойства в ГДО метилпальмитата [6–8] и метиллаурата [9]. При этом, наиболее распространённым методом приготовления Ni-фосфидных катализаторов является пропитка носителя по влагоёмкости водными растворами солей никеля и фосфора с последующей сушкой, прокаливанием и температурно-программируемым восстановлением в токе водорода при высоких температурах (более 550 °C) [10].

Недавно был обнаружен синергетический эффект механической смеси гранул Ni₂P/SiO₂ катализатора и гранул γ-Al₂O₃ в ГДО метилпальмитата [11]. Конверсия эфира увеличивается с 20% при использовании инертного разбавителя Ni₂P/SiO₂ до 79% при использовании Ni₂P/SiO₂ в смеси с гранулами γ-Al₂O₃ при 290 °C. Данный эффект объясняется ускорением первой стадии превращения эфира в кислоту за счёт гидролиза, который может протекать на кислотных центрах γ-Al₂O₃ [11]. Поэтому наиболее привлекательным является использование γ-Al₂O₃ в качестве носителя Ni-фосфидных катализаторов. Однако формирование фосфидов никеля на поверхности γ-Al₂O₃ осложняется сильным взаимодействием предшественников фосфора с поверхностью носителя при высоких температурах с образование AIPO₄ [10], что сопровождается снижением удельной площади поверхности из-за спекания AIPO₄ [12].

Одним из решений, которое предлагается для минимизации сильного взаимодействия предшественников фосфора с ү-Al₂O₃ является использование низкотемпературных методов синтеза. В первую очередь, применение других предшественников, требующих более низких температур восстановления (фосфиты, гипофосфиты) [12], а также использование метода фосфидирования металлических предшественников в газовой фазе фосфином [13,14] И жидкой В фазе фосфорорганическими соединениями [15–17]. Другой вариант — использование других модификаций оксида алюминия (δ- и χ-). В литературе отсутствуют данные о влиянии фазы оксида алюминия на формирование фосфидов никеля на их поверхности, хотя взаимодействие предшественников никеля и фосфора с поверхностью различных фаз оксида алюминия может протекать по-разному из-за разного набора поверхностных групп и различной удельной поверхности.

В свою очередь, природа фазы оксида алюминия может повлиять на активность катализатора в ГДО эфиров жирных кислот. Например, было показано, что фаза Al₂O₃ может повлиять на каталитические свойства кобальтовых катализаторов синтеза Фишера-Тропша [18], никелевых катализаторов гидродехлорирования хлорбензола [19], метанирования СО [20], гидрирования толуола [21] и никелевых катализаторов для реакционной адсорбции дибензотиофенов [22].

Важную информацию о состоянии фосфидов никеля на поверхности носителя дают физико-химические методы анализа. В литературе, посвящённой Ni-фосфидным катализаторам, редко используется методики ЯМР на ядрах ¹H, ²⁷Al и ³¹P по сравнению с такими методами как химический анализ, H₂-TПВ (температурно-программируемое восстановление), NH₃-TПД (температурно-программируемая десорбция NH₃), РФА (рентгенофазовый анализ), РФЭС (рентгеновская фотоэлектронная спектроскопия). Метод ³¹P MAS ЯМР позволил получить более детальную информацию о состоянии фосфидов никеля на поверхности SiO₂ [2,13,23]. Для Ni-фосфидных систем, нанесённых на Al₂O₃ можно также получить спектры на ядрах ¹H и ²⁷Al, что может дать ценную информацию о структуре носителя, его поверхности, а также степени взаимодействия предшественников с носителем. Для фосфидов никеля на различных фазах Al₂O₃ такие исследования отсутствуют в литературе. Кроме экспериментальных методов исследования большое распространение в современных каталитических исследованиях получили численные квантовохимические расчёты. Исследовались энергии различных Р-ОН и Ni-OH групп на поверхности Ni₂P [24] и энергии различных металлических центров в структуре Ni₂P [25]. Но в литературе не уделяется должного внимания энергетике взаимодействия предшественников активного компонента с поверхностью носителей, что, в случае различных фаз Al₂O₃, может представлять дополнительный интерес с точки зрения синтеза активных Ni-фосфидных катализаторов.

Расчёты ЯМР хорошо зарекомендовали себя для отнесения протонных групп, как например в статье [26] при помощи расчётов методом GIPAW [27] были соотнесены экспериментально наблюдаемые пики в ¹Н ЯМР спектрах с теоретически смоделированными гидроксильными группами на поверхности, что позволило определить тип гидроксильных групп и к каким поверхностным центрам они соответствуют.

Список литературы

[1] J. Chen, H. Shi, L. Li, K. Li, Appl. Catal. B Environ. 144 (2014) 870-884.

[2] I. Deliy, I. Shamanaev, E. Gerasimov, V. Pakharukova, I. Yakovlev, O. Lapina, P. Aleksandrov, G. Bukhtiyarova, Catalysts 7 (2017) 298.

[3] Y. Yang, C. Ochoa-Hernández, P. Pizarro, V.A. de la Peña O'Shea, J.M. Coronado, D.P. Serrano, Fuel 144 (2015) 60-70.

[4] И.В. Шаманаев, И.В. Делий, В.П. Пахарукова, Е.Ю. Герасимов, В.А. Рогов, Г.А. Бухтиярова, Известия Академии Наук. Серия Химическая (2015) 2361-2370.

[5] Y. Yang, J. Chen, H. Shi, Energy and Fuels 27 (2013) 3400-3409.

[6] Y. Xue, Q. Guan, W. Li, RSC Adv. 5 (2015) 53623-53628.

[7] Q. Guan, F. Han, W. Li, RSC Adv. 6 (2016) 31308-31315.

[8] I. V Shamanaev, I. V Deliy, P. V Aleksandrov, E.Y. Gerasimov, V.P. Pakharukova, E.G. Kodenev, A.B. Ayupov, A.S. Andreev, O.B. Lapina, G.A. Bukhtiyarova, RSC Adv. 6 (2016) 30372-30383.

[9] M.C. Alvarez-Galvan, G. Blanco-Brieva, M. Capel-Sanchez, S. Morales-delaRosa, J.M. Campos-Martin, J.L.G. Fierro, Catal. Today (2017) 0-1.

[10] R. Prins, M.E. Bussell, Catal. Letters 142 (2012) 1413-1436.

[11] I. Shamanaev, I. Deliy, E. Gerasimov, V. Pakharukova, E. Kodenev, P. Aleksandrov, G. Bukhtiyarova, Catalysts 7 (2017) 329.

[12] M. Peroni, G. Mancino, E. Baráth, O.Y. Gutiérrez, J.A. Lercher, Appl. Catal. B Environ. 180 (2016) 301-311.

[13] S. Yang, R. Prins, Chem. Commun. (2005) 4178-80.

[14] S. Yang, C. Liang, R. Prins, J. Catal. 237 (2006) 118-130.

[15] K.-S. Cho, H.-R. Seo, Y.-K. Lee, Catal. Commun. 12 (2011) 470-474.

[16] J. Chen, M. Han, S. Zhao, Z. Pan, Z. Zhang, Catal. Sci. Technol. 6 (2016) 3938-3949.

[17] J. Wang, Y. Yuan, A. Shuaib, J. Xu, J. Shen, RSC Adv. (2015) 74312-74319.

[18] S. Rane, Ø. Borg, J. Yang, E. Rytter, A. Holmen, Appl. Catal. A Gen. 388 (2010) 160-167.

[19] K.V.R. Chary, P.V. Ramana Rao, V. Venkat Rao, Catal. Commun. 9 (2008) 886-893.

[20] J. Gao, C. Jia, J. Li, M. Zhang, F. Gu, G. Xu, Z. Zhong, F. Su, J. Energy Chem. 22 (2013) 919-927.

[21] J. Choi, S. Zhang, J.M. Hill, Catal. Sci. Technol. 2 (2012) 179-186.

[22] A. Bazyari, Y. Mortazavi, A.A. Khodadadi, L.T. Thompson, R. Tafreshi, A. Zaker, O.T. Ajenifujah, Appl. Catal. B Environ. 180 (2016) 312-323.

[23] C. Stinner, Z. Tang, M. Haouas, T. Weber, R. Prins, J. Catal. 208 (2002) 456-466.

[24] H.Y. Zhao, D. Li, P. Bui, S.T. Oyama, Appl. Catal. A Gen. 391 (2011) 305-310.

[25] H. Zhao, S.T. Oyama, H.-J. Freund, R. Włodarczyk, M. Sierka, Appl. Catal. B Environ. 164 (2015) 204-216.

[26] Khabibulin D.F., Papulovskiy E., Andreev A.S., Shubin A.A., Volodin A.M., Zenkovets G.A., Yatsenko D.A.,

Tsybulya S.V., Lapina O.B., Zeitschrift fur Physikalische Chemie. 2017. V. 231. N 4. P. 809-825.

[27] Chris J. Pickard, Francesco Mauri, Physical Review B, Volume 63, 245101

3. Подробное описание работы, включая используемые алгоритмы

Расчёты из первых принципов выполнены программным пакетом CASTEP 18.11, в

базисе плоских волн. Расчёты зонной структуры велись при помощи DFT (Теории

функционала плотности), используя обменно-корреляционный функционал HSEO6 (Heyd-Scuseria-Ernzerhof). Электрон-ионное взаимодействие вычислялось в приближении проекционных присоединенных волн (PAW), которое учитывало как валентные, так и остовные электроны. Использовались сохраняющие норму псевдопотенциалы, поставляемые с кодом CASTEP.

Расчёты самосогласованного поля были выполнены с отсечкой энергии в 1007 эВ в Г-точке, расчёты зонной структуры велись в 43 точках вдоль самого короткого пути Z-Г-Y-A-B-D-E-C. Z соответствует (0, 0, ½), Г — (0, 0, 0) (она обозначена как G на графиках), Y — (0, ½, 0), A — (-½, ½, 0), B — (-½, 0, 0), D — (-½, 0, ½), E — (-½, ½, ½), С — (0, ½, ½). Структуры кристаллов были взяты из *Inorganic Crystal Structure Database* (FIZ Karlsruhe, http://www.fiz-karlsruhe.de/icsd.html). Плотность состояний была визуализирована при помощи OptaDOS.

4. Полученные результаты

На кластере НГУ были проведены расчёты плотности состояний и зонной структуры Ni(PO₃)₂, α-Ni₂P₂O₇, δ-Ni₂P₂O₇ и Ni₃(PO₄)₂.

Рисунок 1. Зонная структура и полная плотность состояний соединений.

Рисунок 2. Полная и проекционная плотность состояний соединений.

6. Эффект от использования кластера в достижении целей работы

Использование квантовохимических вычислений на базе оборудование ИВЦ НГУ является значимой частью нашей работы. Осуществление квантовохимических расчётов, результаты которых представлены выше, на персональных компьютерах и других доступных нам кластерах невозможны. 7. Перечень совместных публикаций (в соавторстве с зарубежным партнером по проекту) за весь период реализации проекта

1. Перевозников С. С., Яковлев И. В., ИССЛЕДОВАНИЕ ЭЛЕКТРОХИМИЧЕСКОГО ОСАЖДЕНИЯ ПОКРЫТИЙ НИКЕЛЬ-ФОСФОР ИЗ ЭЛЕКТРОЛИТОВ С РАЗЛИЧНЫМИ ИСТОЧНИКАМИ ФОСФОРА, Международный научно-исследовательский журнал, 2021, 4, 130-135 DOI: https://doi.org/10.23670/IRJ.2021.106.4.021

2. Perevoznikov S. S., Yakovlev I. V., Tsybulskaya L. S., Lapina O. B., Synthesis and Composition Study of Electrochemically Deposited Ni-P Coating with Increased Surface Area, Coatings, 2021, 11, 1071 https://doi.org/10.3390/coatings11091071 Scopus, WOS, импакт-фактор WOS 2.881 (Q2)